Υπολογίζοντας το εμβαδό κάτω από την καμπύλη με την Πληροφορική των Πανελλαδικών

Στο μάθημα των Μαθηματικών Προσανατολισμού… Γ’ Λυκείου ο υπολογισμός του εμβαδού ανάμεσα σε μια καμπύλη και τον άξονα των x από μία τιμή α μέχρι μία τιμή β γίνεται κλασικά μέσω του υπολογισμού της έκφρασης του αόριστου ολοκληρώματος: αν αυτή η έκφραση είναι G(x), τότε το ζητούμενο εμβαδό είναι G(β)-G(α). Όμως, ο υπολογισμός της έκφρασης του αόριστου ολοκληρώματος δεν είναι πάντα εύκολη υπόθεση! Δοκιμάστε για παράδειγμα την ολοκλήρωση της παρακάτω συνάρτησης:

Ας δούμε ένα απλό πρόγραμμα στην Γλώσσα του μαθήματος της Πληροφορικής της Γ’ Λυκείου το οποίο μπορεί να χρησιμοποιηθεί για τoν υπολογισμό του εμβαδού όχι μόνο στην παραπάνω περίπτωση, αλλά και για κάθε συνάρτηση της οποίας δίνεται ο τύπος.

Το παραπάνω πρόγραμμα βασίζεται άμεσα στον ορισμό του ορισμένου ολοκληρώματος, ως το όριο του αθροίσματος των εμβαδών των ορθογωνίων στα οποία μπορεί να χωριστεί η επιφάνεια κάτω από την καμπύλη, καθώς το πλήθος αυτών των ορθογωνίων τείνει στο άπειρο (ισοδύναμα καθώς η ποσότητα δχ τείνει στο 0) – βλ. ενότητα 3.4, “Ορισμένο ολοκλήρωμα”, Μαθηματικά Γ’ Τάξης ΓΕΛ Ομάδας Προσανατολισμού... Από αυτόν τον ορισμό συνεπάγεται ότι μπορούμε να πετύχουμε όσο καλή προσέγγιση του εμβαδού θέλουμε επιλέγοντας μια ανάλογα μεγάλη τιμή του πλήθους των ορθογωνίων.

Το τελευταίο πλήθος εκφράζεται από την μεταβλητή ν στο παραπάνω πρόγραμμα, ενώ το εμβαδό του ι-οστού ορθογωνίου από την έκφραση f(α+ι*δχ)*δχ, όπου δχ είναι η μία διάσταση του ορθογωνίου και f(α+ι*δχ) η άλλη, όπου f είναι μία συνάρτηση με δεδομένο αναλυτικό τύπο, της οποίας κάποιο ορισμένο ολοκλήρωμα ζητείται– τέτοιες συναρτήσεις μπορούν εύκολα να κωδικοποιηθούν στην ΓλώσσαΗ μεταβλητή Σ κρατάει το άθροισμα των εμβαδών των ορθογωνίων.

Η μεταβλητή δχ είναι αντιστρόφως ανάλογη της μεταβλητής ν: όσο μεγαλύτερη η μία, τόσο μικρότερη η άλλη. Για την παραπάνω εμφανιζόμενη τιμή δχ=0.001 το πρόγραμμα δίνει ικανοποιητική επίλυση σε διάφορες περιπτώσεις, αλλά ανάλογα με το εύρος του διαστήματος [α, β] και την απαιτούμενη τιμή δχ, ο αριθμός ν μπορεί να υπερβαίνει το φράγμα 105. Η συγκεκριμένη τιμή επιλέχτηκε λόγω του ότι η υπολογιστική της αντιμετώπιση είναι εφικτή στους περισσότερους Η/Υ που κυκλοφορούν εκεί έξω. Φυσικά, μπορείτε να θέσετε μεγαλύτερη τιμή, ανάλογα και με τις δυνατότητες του υπολογιστή σας.

Ας δούμε το πρόγραμμά μας στην πράξη. Θα υπολογίσουμε το παρακάτω ολοκλήρωμα (το οποίο δεν μπορεί να υπολογιστεί με την μεθοδολογία που περιγράφεται στα Μαθηματικά Προσανατολισμού… της Γ’ ΓΕΛ ):

Κωδικοποιούμε την συνάρτηση f (και φυσικά θέτουμε α=0 και β=10):

Η εκτέλεση του προγράμματος στον Διερμηνευτή της Γλώσσας δίνει 0.88672693.  Δοκιμάζουμε μια μικρότερη τιμή για το δχ, 0.0001 και παίρνουμε 0.88627693. Παρατηρείστε ότι ο αριθμός αριστερά από την υποδιαστολή και τα τρία πρώτα δεκαδικά ψηφία δεν άλλαξαν, γεγονός που συνιστά μια ένδειξη (όχι όμως  και απόδειξη) ότι ο αριθμός αριστερά από την υποδιαστολή και τα τρία πρώτα δεκαδικά του αποτελέσματος είναι αυτά ακριβώς! Ας τσεκάρουμε το αποτέλεσμά μας με ένα καταξιωμένο λογισμικό όπως το Wolfram|Alpha, το οποίο δίνει 0.886227

(https://www.wolframalpha.com/input/?i=integrate+e%5E%28-x%5E2%29+from+0+to+10)

Ας δούμε ένα άλλο ολοκλήρωμα, το οποίο επίσης δεν φαίνεται και πολύ εύκολο:

Κωδικοποιούμε την συνάρτηση στην Γλώσσα:

Η εκτέλεση του προγράμματος για δχ=0.001 δίνει 3052491665.01952. Δοκιμάζουμε για μικρότερο δχ, 0.0001, και παίρνουμε 3056988940.38689. Παρατηρούμε ότι τα τρία πρώτα ψηφία αριστερά από την υποδιαστολή δεν άλλαξαν. Το Wolfram|Alpha δίνει 3057488912.86528.

(https://www.wolframalpha.com/input/?i=integrate+%CF%87%5E%CF%87+from+0+to+10)

Η ποσοστιαία απόκλιση της δεύτερης τιμής που έδωσε το πρόγραμμά μας από την τιμή του Wolfram|Alpha είναι 0.016%.

Μια άλλη (κάπως πιο εύκολη για τα Μαθηματικά) περίπτωση:

Η επίλυση του αόριστου ολοκληρώματος που δίνει το Wolfram|Alpha μοιάζει κάπως έτσι:

https://www.wolframalpha.com/input/?i=integrate+1%2F%28%28x-3%29%5E4%2B1%2F2%29

Διαμορφώνουμε την f στο πρόγραμμά μας:

Οπότε, με την εκτέλεση για δχ=0.001 παίρνουμε 3.72272538. Δοκιμάζουμε για δχ=0.0001 και παίρνουμε 3.72272005. Παρατηρούμε ότι η τιμή αριστερά από την υποδιαστολή και τα πέντε πρώτα δεκαδικά ψηφία δεν άλλαξαν. To Wolfram|Alpha δίνει 3.72272

(https://www.wolframalpha.com/input/?i=integrate+1%2F%28%28x-3%29%5E4%2B1%2F2%29+from+0+to+10 )

Ας δούμε, τέλος, και μια εύκολη (για τα Μαθηματικά) περίπτωση:

Κωδικοποιούμε την συνάρτηση:

Για δχ=0.001 παίρνουμε 333.283335. Για δχ=0.0001 παίρνουμε 333.32833335.  Από την γνωστή παράγουσα της συνάρτησης παίρνουμε 10^3/3 =333.3333…

Αξίζει να σημειώσουμε ότι ο κλάδος της Πληροφορικής που μελετάει τα προβλήματα της Ανάλυσης από καθαρά υπολογιστική σκοπιά – η οποία έχει και ιδιαίτερη σημασία για την επιστημονική μοντελοποίηση και έρευνα – ονομάζεται Αριθμητική Ανάλυση.

*Οι εικόνες του κώδικα του προγράμματος είναι screenshots από τον Διερμηνευτή της Γλώσσας

Γιώργος Μπουγιούκας

Τεκμηριώνεται επιστημονικά η Β’ (και η Α’) ανάθεση του μαθήματος των μαθηματικών σε πληροφορικούς στην β/βάθμια εκπαίδευση;

Ως γνωστόν, με βάση το άρθρο 30 του Ν.2009/1992 (ΦΕΚ 18/14-2-1992, τ.Α ́) “Εθνικό Σύστημα Επαγγελματικής Εκπαίδευσης και Κατάρτισης και άλλες διατάξεις” μετατάχθηκαν στον νεοσύστατο τότε εκπαιδευτικό κλάδο Π19, λόγω έλλειψης απόφοιτων πληροφορικής, εκπαιδευτικοί χωρίς πτυχίο πληροφορικής, κυρίως μαθηματικοί. Θεωρώ ότι δικαιωματικά ένας μαθηματικός είναι η πρώτη επιλογή αναπλήρωσης ενός πληροφορικού όταν προκύψει ανάγκη, θα δείξω, μάλιστα, ότι αυτή η “συνάρτηση” είναι “αντιστρέψιμη”, δηλαδή ότι και ένας πληροφορικός είναι η πρώτη επιλογή αναπλήρωσης ενός μαθηματικού.

Η σχέση πληροφορικής-μαθηματικών είναι εσωτερική-δομική και όχι εξωτερική-εργαλειακή.

Η εργαλειακή χρήση των μαθηματικών, όπως άλλωστε και της πληροφορικής, λαμβάνει χώρα σε μια πληθώρα επιστημών και ειδικοτήτων. Για παράδειγμα, η επιστήμη της φυσικής χρησιμοποιεί τα μαθηματικά ως εργαλείο με σκοπό την μοντελοποίηση του αντικείμενου της μελέτης της, του φυσικού κόσμου, ο οποίος δεν είναι αυτός καθαυτός αυστηρά ορισμένο μαθηματικό αντικείμενο – τουλάχιστον κανείς μέχρι τώρα δεν έχει καταφέρει να αποδείξει κάτι τέτοιο.

Από την άλλη πλευρά, το θεμελιώδες αντικείμενο της πληροφορικής είναι οι αλγόριθμοι, ευρύτερα γνωστοί ως “προγράμματα”, οι οποίοι είναι ένα αυστηρά ορισμένο μαθηματικό αντικείμενο, αυτοί καθαυτοί. Οι αλγόριθμοι δεν “χρησιμοποιούν τα μαθηματικά”, αλλά χρησιμοποιούν τα…υπόλοιπα μαθηματικά, όπως και τα υπόλοιπα μαθηματικά χρησιμοποιούν τους αλγόριθμους, αν όχι θεμελιώνονται πάνω στους τελευταίους σε κάποιο βαθμό.

Το 1931 ο Γκέντελ δημοσίευσε τα περίφημα θεωρήματα μη-πληρότητας. Η απόδειξή του βασίστηκε πάνω στην επιμέρους απόδειξη ότι οι πρωτόγονες αναδρομικές συναρτήσεις (ένα υποσύνολο των προγραμμάτων) αναπαριστάνονται στην πρωτοβάθμια αριθμητική Peano, με άλλα λόγια είναι αυστηρά ορισμένα μαθηματικά αντικείμενα σε μια τόσο θεμελιώδη μαθηματική θεωρία όπως η αριθμητική. Αυτό αποδεικνύεται και για το σύνολο των προγραμμάτων (μ-Αναδρομικές συναρτήσεις). Για την αναπαράσταση αυτή, μάλιστα, δεν είναι αναγκαίο καν το αξιωματικό σχήμα της επαγωγής, αρκούν οι δύο γνωστές πράξεις, της πρόσθεσης και του πολλαπλασιασμού!

-Οι αλγόριθμοι είναι θεμέλιο των μαθηματικών.

Συνεπάγεται από την προηγούμενη διαπίστωση. Εφόσον οι αλγόριθμοι είναι κομμάτι της πρωτοβάθμιας αριθμητικής Peano, η οποία για ευνόητους λόγους θεωρείται θεμέλιο των μαθηματικών, τότε και οι ίδιοι συνιστούν θεμελιώδες συστατικό των μαθηματικών.

-Τα θεμέλια συναντούν πολύ συχνά τα άλλα θεμέλια (προτασιακό και κατηγορηματικό λογισμό).

Τα τμήματα της τριτοβάθμιας εκπαίδευσης τα οποία χρησιμοποιούν εργαλειακά τα μαθηματικά, συνήθως περιλαμβάνουν στο πρόγραμμα σπουδών τους μια σειρά μαθημάτων των μαθηματικών κλάδων της ανάλυσης και (σπανιότερα) της γραμμικής άλγεβρας, αλλά όχι θεμέλια των μαθηματικών όπως ο προτασιακός και κατηγορηματικός λογισμός. Αυτά τα αντικείμενα αποτελούν στην πλειονότητα των περιπτώσεων αναπόσπαστο κομμάτι των προγραμμάτων σπουδών των διαφόρων τμημάτων πληροφορικής (τα οποία συνιστούν τους εκπαιδευτικούς κλάδους Π19 και Π20) και θέτουν τις βάσεις για μια βαθιά κατανόηση των μαθηματικών η οποία είναι πάνω από κάθε σύγκριση με την όποια εξωτερική-εργαλειακή τους χρήση.

Η μελέτη των αλγορίθμων απαιτεί ένα ακόμα ευρύτερο μαθηματικό υπόβαθρο, γεγονός το οποίο επιβεβαιώνουν τα προγράμματα σπουδών της πλειονότητας των τμημάτων πληροφορικής.

Πέρα από τον προτασιακό και κατηγορηματικό λογισμό, συνήθη μαθηματικά αντικείμενα ή μοντέρνες φαρμογές των μαθηματικών στα προγράμματα σπουδών πληροφορικής είναι:

  • Aνάλυση
  • Γραμμική άλγεβρα
  • Θεωρία πιθανοτήτων
  • Θεωρία συνόλων
  • Συνδυαστική
  • Θεωρία των γράφων
  • Θεωρία υπολογισιμότητας
  • Θεωρία αυτομάτων και τυπικών γλωσσών
  • Θεωρία πολυπλοκότητας
  • Θεωρία πληροφορίας
  • Κρυπτογραφία
  • Γραμμικός προγραμματισμός
  • Άλγεβρα Μπουλ
  • Θεωρία παιγνίων

-Οι αλγόριθμοι είναι παντού στα μαθηματικά.

Ξεκινώντας την μαθηματική εκπαίδευση ήδη από τις πρώτες τάξης του Δημοτικού και συνεχίζοντας σε υψηλότερες βαθμίδες της εκπαίδευσης, διδάσκονται:

  • Ο αλγόριθμος της προπαίδειας.
  • Ο αλγόριθμος της κάθετης πρόσθεσης και αφαίρεσης.
  • Ο αλγόριθμος του κάθετου πολλαπλασιασμού και της κάθετης διαίρεσης.
  • Αλγόριθμοι εύρεσης του ελάχιστου κοινού πολλαπλασίου (ΕΚΠ).
  • Αλγόριθμοι εύρεσης του μέγιστου κοινού διαιρέτη (ΜΚΔ.)
  • Αλγόριθμοι για την μετατροπή δύο κλασμάτων σε ομώνυμα.
  • Αλγόριθμοι πρόσθεσης κλασμάτων.
  • Ο αλγόριθμος «το κόσκινο του Ερατοσθένη».
  • Ο αλγόριθμος κατασκευής ισοσκελούς τριγώνου με χάρακα και διαβήτη.
  • Ο αλγόριθμος διχοτόμησης ευθύγραμμου τμήματος με χάρακα και διαβήτη.
  • Ο αλγόριθμος διχοτόμησης γωνίας με χάρακα και διαβήτη.
  • Ο αλγόριθμος υπολογισμού ρητής προσέγγισης τετραγωνικής ρίζας φυσικού αριθμού.
  • Ο αλγόριθμος επίλυσης (στο ℝ) μονομεταβλητής πρωτοβάθμιας εξίσωσης με ρητούς συντελεστές.
  • Ο αλγόριθμος επίλυσης (στο ℝ) μονομεταβλητής δευτεροβάθμιας εξίσωσης με ρητούς συντελεστές.
  • Αλγόριθμοι παραγώγισης για διάφορες κλάσεις συναρτήσεων.
  • Αλγόριθμοι ολοκλήρωσης για διάφορες κλάσεις συναρτήσεων.

Οι αλγόριθμοι οριοθετούν τα μαθηματικά.

Η οριοθέτηση μιας επιστήμης είναι απαραίτητη, χρήσιμη, και προσδίδει κύρος σ’ αυτήν. Συνεισφέρει στo να μην καταβάλλεται μάταιη προσπάθεια σε ανέφικτους στόχους. Αν το θεώρημα Lindemann–Weierstrass από το οποίο συνεπάγεται ότι δεν είναι δυνατός ο τετραγωνισμός του κύκλου αποδεικνυόταν νωρίτερα από το 1882, αυτό το πρόβλημα θα απασχολούσε την επιστήμη των μαθηματικών για λιγότερο χρόνο από όσο τελικά την απασχόλησε. Έτσι, τα θεωρήματα μη-πληρότητας του Γκέντελ, η απόδειξη των οποίων όπως είδαμε θεμελιώνεται πάνω στους αλγόριθμους, συνεισφέρουν, για παράδειγμα, στο να μην ασχολούνται οι μαθηματικοί με την απόδειξη της συνέπειας της συνολοθεωρίας ZFC εντός του ZFC, εκτός κι αν θέλουν να αποδείξουν ότι το ZFC είναι ασυνεπές.

Οι αλγόριθμοι όμως δεν οριοθετούν τα μαθηματικά μόνο μέσω των θεωρημάτων μη-πληρότητας του Γκέντελ, αλλά και πιο άμεσα, μέσω του θεωρήματος του τερματισμού του “πατέρα της πληροφορικής”, Άλαν Τούρινγκ. Το πρόβλημα του τερματισμού, το οποίο ο Τούρινγκ απέδειξε ότι είναι “μη-αποφασίσιμο, “ανάγεται” σε διάφορα γνωστά προβλήματα στα μαθηματικά, τα οποία, ως συνέπεια, αποδεικνύονται και αυτά “μη-αποφασίσιμα”. Για παράδειγμα, γνωρίζουμε ότι δεν υπάρχει αλγόριθμος ο οποίος επιλύει στο ℝ κάθε δευτεροβάθμια εξίσωση με πραγματικούς συντελεστές. Επίσης, ότι δεν υπάρχει αλγόριθμος για το πρόβλημα της ισότητας δύο πραγματικών αριθμών, καθώς και για πληθώρα άλλων προβλημάτων.

Η ύπαρξη αλγορίθμων είναι τόσο σημαντική για τα μαθηματικά, όσο και η ανυπαρξία τους!

-Όλα (σχεδόν) τα μαθηματικά μέσα σ’ έναν αλγόριθμο.

Η συνολοθεωρία ZFC αποτελεί δικαιολογημένα θεμέλιο των μαθηματικών, αφού μέχρι τώρα σχεδόν όλα (πλην ελάχιστων εξαιρέσεων) τα μαθηματικά θεωρήματα, αποδεικνύονται μέσα σ΄ αυτήν. Και επειδή πρόκειται για μια “πρωτοβάθμια” θεωρία, το πρόβλημα της “k-αποδειξιμότητας” (k-provability problem) γι’ αυτήν είναι αποφασίσιμο.

Με απλά λόγια αυτό μας λέει ότι δεδομένου ενός ισχυρισμού ο οποίος μπορεί να διατυπωθεί μέσα στην ZFC, υπάρχει αλγόριθμος ο οποίος απαντάει σωστά “ναι” ή “όχι” στο ακόλουθο ερώτημα:

υπάρχει απόδειξη στην ZFC για τον δεδομένο ισχυρισμό της οποίας το μέγεθος είναι το πολύ k σύμβολα; (μια απόδειξη είναι τυπικά μια συμβολοσειρά).

-Ένα από τα μεγαλύτερα ανοιχτά προβλήματα των μαθηματικών σήμερα (αν όχι το μεγαλύτερο) είναι ένα πρόβλημα πληροφορικής: το πρόβλημα P versus NP.

Το ινστιτούτο μαθηματικών Clay έχει ανακηρύξει επτά μαθηματικά βραβεία για την επίλυση αντίστοιχων επτά μαθηματικών προβλημάτων, γνωστών ως Millenium Problems (Προβλήματα της Χιλιετίας). Κάθε βραβείο συνοδεύεται από το χρηματικό ποσό του ενός εκατομμυρίου δολαρίων. Ένα από τα προβλήματα αυτά είναι το P versus NP, το οποίο μπορεί να διατυπωθεί στην ακόλουθη (σχετικά απλοποιημένη) μορφή:

Ο καλύτερος αλγόριθμος μέχρι τώρα για την επίλυση του προβλήματος της k-αποδειξιμότητας της θεωρίας ZFC (το οποίο διατυπώθηκε παραπάνω) είναι αρκετά αργός (“εκθετικός”) για να είναι χρήσιμος-αποδοτικός. Υπάρχει ένας αρκετά γρήγορος (“πολυωνυμικός”) αλγόριθμος, ώστε να είναι χρήσιμος-αποδοτικός;

Επίλογος

Τεκμηριώνεται, λοιπόν, επιστημονικά η Β’ (και η Α’) ανάθεση του μαθήματος των μαθηματικών σε πληροφορικούς στην δευτεροβάθμια εκπαίδευση; Τα συμπεράσματα δικά σας.